
KERNEL-BASED EFFICIENT LIFELONG LEARNING ALGORITHM

Seung-Jun Kim and Rami Mowakeaa

Dept. of Computer Science & Electrical Engineering
University of Maryland, Baltimore County

Baltimore, MD 21250
E-mail: {sjkim,ramo1}@umbc.edu

ABSTRACT

Multitask learning leverages shared structure across multiple tasks
to obtain classifiers with generalization capability surpassing that of
independent single task learning. Lifelong learning further tackles
the challenge of performing multitask learning in an online fashion
for a continual stream of tasks. In this work, kernel-based lifelong
learning algorithm is proposed to capture significant nonlinear struc-
ture in the data. It is postulated that the classifiers accommodate a
union-of-subspace model in the feature space. A shared library of
atoms are then learned based on online kernel dictionary learning
in a reproducing kernel Hilbert space. To alleviate the inherent com-
plexity of nonparametric learning which grows with the data set size,
an approximate classifiers are also obtained, which are representable
using a parsimonious pool of selected examples. Preliminary tests
verify the efficacy of the proposed methods.

1. INTRODUCTION

Multitask learning aims at learning the classifiers for multiple re-
lated tasks jointly, leveraging intrinsically shared structure among
the tasks. Thanks to the inductive bias generated from other tasks,
the resulting classifier for each task tends to enjoy better generaliza-
tion capability, surpassing the performance of the classifiers obtained
from independent single-task learning [1]. It is also instrumental
when the number of examples is small for some tasks. Multitask
learning has found numerous applications ranging from marketing,
finance, and bioinformatics, to self-driving vehicles [2–4].

A Bayesian approach was adopted for multitask learning, where
a set of model parameters were shared across tasks and learned via
maximum likelihood [5]. A multitask learning problem was formu-
lated as the minimization of a regularized functional in [6], where
the classifier for each task was constrained to be close to the av-
erage classifier of all tasks. The multitask learning problem was
formulated as a multi-objective optimization problem and a Pareto-
optimal solution was obtained by the gradient descent method [7].
Assuming that the classifiers were clustered, the authors of [8] pro-
posed to learn the classifiers jointly with the task clusters. A union-
of-subspace model was advocated for the multitask classifiers, by
which both the grouping structures as well as overlaps among the
tasks were captured [9]. These methods are most suitable for batch
processing, where the entire batch of training data for multiple tasks
is available for training.

In many Big Data scenarios, however, the training data are made
available in a streaming fashion. Thus, waiting to collect a large

This work was supported in part by the National Science Foundation
under Grant 1547347.

data set may incur excessive delay and subsequently heavy mem-
ory/computational burden. These issues can be alleviated by on-
line learning, where the incoming data are processed incrementally.
Online multitask learning was investigated in an adversarial setup
in [10, 11]. In a lifelong learning scenario, testing for previous tasks
can occur at any time and training of novel (as well as old) tasks
emerge continuously over time, without specifying the set of tasks
beforehand [12, 13]. Thus, the inductive bias needs to be transferred
from the past tasks to the future ones, and vice versa, in the lifelong
setting. A lifelong learning algorithm was developed based on the
model of [9] in [12]. In order to derive an algorithm efficient in com-
putation and memory use, quadratic approximations were introduced
for single-task learning costs, and the ensuing optimization problem
was tackled using the ideas of online dictionary learning [14].

When the data possess significant nonlinear structure, kernel
methods can effectively capture such structure by first mapping the
data into a high-dimensional feature space. The kernel methods have
been successfully applied to the support vector machine, principal
component analysis, and dictionary learning [15,16]. A kernel-based
multitask learning formulation was proposed, which was recast as
single-task learning with multitask kernels [17]. A manifold-based
regularizer was employed for multitask learning in [18]. However,
very few kernel-based lifelong learning algorithms exist. In [19],
Gaussian process was employed to develop nonparametric classi-
fiers in a lifelong setting, where shared structure was imposed on
the covariance kernel parameters of individual tasks.

In this paper, a kernel-based nonparametric lifelong learning
algorithm is developed. Inspired by [9, 12], a union-of-subspace
model is employed for the classifiers in a reproducing kernel Hilbert
space (RKHS). To develop an efficient online learning algorithm,
the recently developed online kernel dictionary learning approach
is adopted, where a nonparametric dictionary is updated using the
stochastic gradient descent method [20]. As with any kernel method,
the learned classifiers depend on the entire training data, which grow
in size over time [21]. To alleviate the memory and computational
requirements, a parsimonious algorithm is also derived, which main-
tains a small pool of examples selected to approximate the functional
dictionary.

The rest of the paper is organized as follows. In Sec. 2, the
kernel-based multitask learning problem is formulated. In Sec. 3,
a lifelong learning algorithm is derived. In Sec. 4, the algorithm
using a parsimonious pool of examples is developed. Numerical test
results are presented in Sec. 5. Conclusions are provided in Sec. 6.

2. PROBLEM FORMULATION

Consider a multitask learning problem, consisting of T supervised
learning tasks. Each task t ∈ {1, 2, . . . , T} entails Nt training ex-



amples (X(t),y(t)), where X(t) := [x
(t)
1 ,x

(t)
2 , . . . ,x

(t)
Nt

] ∈ Rp×Nt

and y(t) := [y
(t)
1 , . . . , y

(t)
Nt

] ∈ RNt , and a mapping f (t) : Rp → R,

which maps the features x
(t)
n to the labels y(t)

n for n = 1, 2, . . . , Nt.
The objective of the multitask learning is to jointly construct the
task models (classifiers) f̂ (1), f̂ (2), . . . , f̂ (T ) that approximate
f (1), f (2), . . . , f (T ), respectively, by leveraging knowledge/skills
shared across the tasks.

The formulations in [9, 12] take a parametric approach and pos-
tulates f (t)(x) as f (t)(x) := f(x;θ(t)) where θ(t) is the parameter
vector for task t classifier. In order to capture the shared knowledge
among the tasks, it is further assumed that θ(t) for all t can be rep-
resented as a sparse combination of a library (dictionary) of atoms.
That is, upon denoting the library as L ∈ Rp×K and the sparse co-
efficient vector for task t as s(t) ∈ RK , it is assumed that

θ(t) = Ls(t). (1)

Introduce now the loss function L(ŷ, y) that captures the closeness
of the predicted label ŷ and the true label y. For example, the least-
square cost L(ŷ, y) = 1

2
(ŷ − y)2 can be adopted. The loss function

is assumed to be the same for all tasks for simplicity. Then, the
overall optimization problem can be formulated as

min
L∈Rp×K

1

T

T∑
t=1

min
s(t)

{
1

Nt

Nt∑
n=1

L(f(x(t)
n ; Ls(t)), y(t)

n ) + µ‖s(t)‖1

}
+ λ‖L‖2F . (2)

The goal of the present work is to extend this to a nonpara-
metric setting to accommodate nonlinear classifiers. The idea of
kernel-based learning is to first transform the data {x(t)

n } to a high-
dimensional feature space, namely a RKHSH, via a nonlinear map-
ping φ : Rp → H. Then, with a slight abuse of notation, the relevant
formulation can be written as

min
L∈HK

1

T

T∑
t=1

min
s(t)

{
1

Nt

Nt∑
n=1

L(〈φ(x(t)
n ),Ls(t)〉, y(t)

n )

+µ‖s(t)‖1
}

+ λ‖L‖2H, (3)

where 〈·, ·〉 denotes the inner product, L is a row vector of {lk ∈ H},
and ‖L‖2H :=

∑K
k=1 ‖lk‖

2
H. Let N :=

∑T
t=1 Nt, Φ(X(t)) :=

[φ(x
(t)
1 ), . . . ,φ(x

(t)
Nt

)] ∈ HNt and Φ(X) := [Φ(X(1)), . . . ,

Φ(X(T ))] ∈ HN . Then, it can be easily shown that the optimal L
can be represented using a coefficient matrix A as

L = Φ(X)A. (4)

Inspired by the efficient lifelong learning algorithm (ELLA) [12],
we approximate the per-task loss as a quadratic function. Consider
the single-task learning (STL) problem for task t:

min
θ(t)∈H

[
`(t)(θ(t)) :=

1

Nt

Nt∑
n=1

L(〈φ(x(t)
n ),θ(t)〉, y(t)

n )

]
(5)

whose optimal solution is denoted as θ(t)
o . From Representer Theo-

rem, θ(t)
o can be represented as

θ(t)
o = Φ(X(t))w(t)

o (6)

for a coefficient vector w
(t)
o ∈ RNt . Then, `(t)(θ(t)) can be approx-

imated around θ(t) = θ
(t)
o to the second order as

`(t)(θ(t)) ≈ 1

2

∥∥∥θ(t) − θ(t)
o

∥∥∥2

H(t)
+ const. (7)

where H(t) := ∇2`(θ
(t)
o ), ‖θ‖2H := 〈θ,Hθ〉, and const. is a con-

stant that does not depend on θ(t). Note that the first-order term
vanishes at θ(t) = θ

(t)
o due to the first-order optimality. The Hes-

sian is computed to be

H(t) =
1

Nt
Φ(X(t))L′′t Φ(X(t))> (8)

where > denotes transposition, ŷ(t)
n := 〈φ(x

(t)
n ),θ(t)〉, L′′(ŷ, y) :=

∂2

∂ŷ2
L(ŷ, y), and L′′t := diag{L′′(ŷ(t)

1 , y
(t)
1 ), . . . ,L′′(ŷ(t)

Nt
, y

(t)
Nt

)}.
With these, (3) can be approximated as

min
L

1

T

T∑
t=1

min
s(t)

{∥∥∥θ(t)
o − Ls(t)

∥∥∥2

H(t)
+ µ‖s(t)‖1

}
+ λ‖L‖2H.

(9)

Note that (9) is actually a kernel dictionary learning formulation with
L playing the role of the dictionary, θ(t)

o the t-th data vector, and s(t)

the corresponding sparse coefficients, provided that H(t) = I [16,
20].

3. KERNEL-BASED EFFICIENT LIFELONG LEARNING

Lifelong learning aims to solve (9) in an online fashion. Toward this
end, it is first noted that upon defining

g(L;θo,H) := min
s

{
‖θo − Ls‖2H + µ‖s‖1

}
(10)

the objective of (9) approaches E[g(L;θo,H)] + λ‖L‖2H as T
grows, thanks to the Law of Large Numbers. The expectation is
with respect to θo and H. Thus, we can consider the stochastic
optimization problem given by

min
L
E[g(L;θo,H)] + λ‖L‖2H. (11)

Problem (11) can be solved in an online fashion using the stochastic
gradient descent (SGD) method [22]. To perform a SGD update, the
(instantaneous) gradient of the objective must be evaluated. For the
t-th task, the sparse coefficient is obtained by solving

s(t)
o := arg min

s

∥∥∥θ(t)
o − Ls

∥∥∥2

H(t)
+ µ‖s‖1. (12)

Then,∇{g(L;θ
(t)
o ,H(t)) + λ‖L‖2H} can be computed as

H(t)(Ls(t)
o − θ(t)

o )s(t)
o

>
+ 2λL. (13)

Suppose for simplicity that the t-th task dataset (X(t),y(t)) is
revealed at iteration t. That is, the task number is also the iteration
number. Then, the SGD update at iteration t is given by

L(t) = L(t− 1)− η∇{g(L(t− 1); θ
(t)
0 ,H(t)) + λ‖L(t− 1)‖2H}

(14)

= (1− 2λη)L(t− 1)− ηH(t)(L(t− 1)s(t)
o − θ(t)

o )s(t)
o

>

(15)



Plugging in (4), (6), and (8) into (15), one obtains

Φ(X)A(t) =(1− 2λη)Φ(X)A(t− 1)− η

Nt
Φ(X(t))L′′t Φ(X(t))>

(Φ(X)A(t− 1)s(t)
o −Φ(X(t))w(t)

o )s(t)
o

>
. (16)

Define Nt1:t2 :=
∑t2
t=t1

Nt and Φ(X(t1:t2)) := [Φ(X(t1)), . . . ,

Φ(X(t2))]. Define also Kt,t := Φ(X(t))>Φ(X(t)), and Kt,t1:t2 :=

Φ(X(t))>Φ(X(t1:t2)), which can be computed without specifying
the transformation φ using the kernel trick. Then, noting that

Φ(X(t))L′′t = Φ(X)

0N1:(t−1)×Nt

L′′t
0N(t+1):T×Nt

 (17)

one can easily verify that (16) is equivalent to

A(t) =

[
Ã(t)

0N(t+1):T×K

]
∈ RN×K (18)

Ã(t) =

[
(1− 2λη)Ã(t− 1)

− η
Nt

L′′t
(
Kt,1:t−1Ã(t− 1)s

(t)
o −Kt,tw

(t)
o

)
s
(t)
o

>

]
∈ RN1:t×K . (19)

Note also that, from (4), (6) and (18), the sparse coding (12) at iter-
ation t can be done using A(t− 1) as

s(t)
o = arg min

s

∥∥∥L′′t 1
2 Kt,tw

(t)
o −L′′t

1
2 Kt,1:t−1Ã(t− 1)s

∥∥∥2

2

+ µ‖s‖1. (20)

We call the overall algorithm, listed in Table 1, kernel-based
ELLA, or KELLA. The initial Ã can be set by solving a batch for-
mulation in (9) using a small number Tinit of tasks, or simply by
using a N1:Tinit ×K matrix with random entries. In line 2, the STL
classifier is computed by solving (5). Here, the kernel trick allows
to compute kn,t := φ(x

(t)
n )>Φ(X(t)) without actually comput-

ing the nonlinear features. After all the samples are processed, the
sparse codes are re-computed using the final estimate of the library
in lines 8–10. The classifiers for individual tasks are then obtained
as f̂(x) := φ(x)>Φ(X)As(t) for t = 1, 2, . . . , T .

4. PARSIMONIOUS KELLA

A critical issue with any kernel-based nonparametric learning algo-
rithms is that the function estimate depends on all the training ex-
amples, and the computational complexity grows significantly with
the size of the training set. In the lifelong learning setting, where the
samples arrive indefinitely over time, KELLA suffers from increas-
ing complexity and memory requirement over time. To mitigate this,
a parsimonious version of KELLA is developed in this section. In-
spired by [23], the idea is that the library iterate L(t) after each SGD
update is approximated by projecting it to a subspace spanned by a
small number of samples. The pool of samples are sought under a
given approximation error budget.

Specifically, let Dt−1 ∈ Rp×Mt−1 be the pool of samples used
to represent L(t− 1) as L(t− 1) = Φ(Dt−1)A(t− 1) at iteration
(t−1). Upon receiving task-t samples X(t), and performing STL to
obtain θ

(t)
o = Φ(X(t))w

(t)
o (and L′′t ) as before, the sparse coding

can be performed as

s(t)
o = arg min

s
‖L′′

1
2

t Kt,tw
(t)
o −L′′

1
2

t Kt,DtA(t− 1)s‖22 + µ‖s‖1.
(21)

Input: {(X(t),y(t))}Tt=1, λ, µ, η, K, Ã(Tinit) ∈ RN1:Tinit
×K

Output: A, {s(t)}Tt=1

1: For t = Tinit + 1, 2, . . . , T
/* Compute the STL classifier */

2: w
(t)
o = arg minw

∑Nt
n=1 L(kn,tw, y

(t)
n )

3: Compute L′′t
4: Perform sparse coding via (20)
5: Update Ã(t) as in (19)
6: End For
7: Set A = Ã(T )

/* Polish the sparse codes */
8: For t = 1, 2, . . . , T

9: s(t) = arg mins

∥∥∥L′′t 1
2 Kt,tw

(t)
o −L′′t

1
2 Kt,1:TAs

∥∥∥2

2
+µ‖s‖1

10: End For

Table 1. Kernel-based efficient lifelong learning algorithm
(KELLA).

Input: {(X(t),y(t))}Tt=1, λ, µ, η, K, ε, A(Tinit) ∈ RN1:Tinit
×K

Output: A, D, {s(t)}Tt=1

1: Let DTinit = [X(1), . . . ,X(Tinit)]
2: For t = Tinit + 1, 2, . . . , T

3: w
(t)
o = arg minw

∑Nt
n=1 L(kn,tw, y

(t)
n )

4: Compute L′′t
5: Perform sparse coding via (21)
6: Compute Ǎ(t) in (23)
7: Set Ďt := [Dt,X

(t)]
8: Compute sparse approximation via

(A(t),Dt) := destructive KOMP(Ǎ(t), Ďt, ε)
9: End For

10: Set A = A(T ) and D = DT

11: For t = 1, 2, . . . , T

12: s(t) = arg mins

∥∥∥L′′t 1
2 Kt,tw

(t)
o −L′′t

1
2 Kt,DAs

∥∥∥2

2
+µ‖s‖1

13: End For

Table 2. Parsimonious KELLA.

Define a tentative pool as Ďt := [Dt−1,X
(t)], which simply aug-

ments Nt new samples to the existing pool. Then, the SGD update
is performed as [cf. (15)–(16)]

Ľ(t) = (1− 2λη)L(t− 1)− ηH(t)(L(t− 1)s(t)
o − θ(t)

o )s(t)
o

>

= (1− 2λη)Φ(Dt−1)A(t− 1)− η

Nt
Φ(X(t))L′′t Φ(X(t))>

(Φ(Dt−1)A(t− 1)s(t)
o −Φ(X(t))w(t)

o )s(t)
o

>
. (22)

Note that Ľ(t) can be represented as Ľ(t) = Φ(Ďt)Ǎ(t), where

Ǎ(t) :=

[
(1− 2λη)A(t− 1)

− η
Nt

L′′t
(
Kt,Dt−1A(t− 1)s

(t)
o −Kt,tw

(t)
o

)
s
(t)
o

>

]
.

(23)

Now, suppose that an updated pool Dt is available. How to construct
Dt will be discussed shortly. Then, an approximated version of the
library can be obtained by projecting Ľ(t) to the subspace spanned



0 100 200 300 400 500

Tasks

0

0.02

0.04

0.06

0.08

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

KELLA

0 100 200 300 400 500

Tasks

0

0.05

0.1

0.15

0.2

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n

Parsimonious KELLA

Fig. 1. Convergence of KELLA and parsimonious KELLA.

0 100 200 300 400 500

Task

0

0.5

1

1.5

2

2.5

3

N
M

S
E

NMSE comparison: KELLA = 0.133596, STL = 0.292333

KELLA

STL

Fig. 2. NMSE of KELLA and STL.

by Φ(Dt) as in

L(t) := arg min
L∈span{Φ(Dt)}

‖L− Ľ‖2H (24)

which can be written equivalently in terms of A(t) as

A(t) := arg min
A
‖Φ(Dt)A−Φ(Ďt)Ǎ(t)‖2H (25)

= K−1
Dt,Dt

KDt,Ďt
Ǎ(t). (26)

To prevent the size of the pool from growing indefinitely, an
error budget ε is introduced, and Dt is constructed by removing
as many samples as possible from Ďt before the error budget is
violated. A greedy procedure called destructive kernel orthogonal
matching pursuit (KOMP) was proposed in [23] for this purpose,
which can be used here as well. The goal is to find a sparse combi-
nation of bases to represent the library within the budget. Parsimo-
nious KELLA is summarized in Table 2. The initialization is done
the same way as in KELLA. After the algorithm has converged, the
desired classifiers are obtained as f̂(x) := φ(x)>Φ(D)As(t) for
all t.

5. NUMERICAL EXPERIMENTS

5.1. Test with Synthetic Data Set

To test the proposed algorithms, a regression problem was consid-
ered based on a synthetic data set. The data vectors {x(t)

n } were
generated using standard Gaussian distribution with p = 13 fol-
lowed by unit-norm normalization. The data set size Nt was set to
10 for all tasks. A library of K = 6 atoms was generated, again

0 20 40 60 80 100 120 140

Schools

0

10

20

30

40

50

60

R
M

S
E

Parsimonious KELLA

STL

ELLA

Fig. 3. NMSE for London School Data Set.

STL ELLA KELLA
24.39± 0.78 8.27± 0.14 7.86± 0.11

Table 3. Average RMSE for London school data set.

using standard Gaussian entries in A, followed by column-wise nor-
malization. The regression coefficients θ(t) was computed as Ls(t)

with the number of nonzero entries in s(t) equal to 3. The least
square loss was used for L(ŷ, y). The radial basis function (RBF)
kernel κ(x1,x2) = exp(−‖x1 − x2‖22) and the polynomial kernel
κ(x1,x2) = (x>1 x2 + 1)2 were used.

The top panel in Fig. 1 shows the evolution of the objective
function value of KELLA with the polynomial kernel and the bot-
tom panel that of parsimonious KELLA with the RBF kernel and
ε = 0.01. Step size η = 1 was used. It can be seen that the pro-
posed algorithms converge. The average number of nonzero entries
in {s(t)} was close to 3 from both algorithms. Fig. 2 depicts the
normalized mean square error (NMSE) performance of KELLA and
STL, where the average NMSE over all tasks was equal to 0.13 for
KELLA and 0.29 for STL. The performance of ELLA (not shown)
was much worse. For parsimonious KELLA, the size of the exam-
ple pool converged to 199. When the data were generated using the
polynomial kernel, but parsimonious KELLA was run with the RBF
kernel, the pool size increased to 489. However, the average number
of nonzeros in {s(t)} stayed approximately the same as 3.

5.2. Test with Real Data Set

We also tested employing the London school data set used in many
multitask learning works [9]. It contains the features of 15, 362 stu-
dents spread across 139 schools. The regression task is to predict the
students’ exam scores. Different schools were treated as different yet
related tasks. 50% of the data was used for training and the rest for
testing. 10 random splits were generated and the regression perfor-
mance was averaged. The RBF kernel was employed. Fig. 3 depicts
the root mean square errors (RMSEs) from STL, ELLA, and parsi-
monious KELLA obtained in a typical split. The average RMSEs
are listed in Table 3 with their standard deviations.

6. CONCLUSION

Kernel-based lifelong learning algorithms were proposed. Shared
nonlinear structure among multiple tasks was captured via a union-
of-subspace model in the feature space. By adopting a quadratic
approximation for per-task costs, the problem was recast as a kernel
dictionary learning problem. An online algorithm was derived using
the stochastic gradient descent method in the feature space, and its
memory and computation burden was mitigated by approximating
the dictionary using a small pool of selected examples. Tests with
synthetic and real data sets showed the effectiveness of the proposed
methods.



7. REFERENCES

[1] R. Caruana, “Multitask learning,” Machine Learning, vol. 28,
no. 1, pp. 41–75, Jul. 1997.

[2] G. M. Allenby and P. E. Rossi, “Marketing models of con-
sumer heterogeneity,” J. Econometrics, vol. 89, no. 1–2, pp.
57–78, Nov. 1998.

[3] H. Yuan, I. Paskov, H. Paskov, A. J. González, and C. S. Leslie,
“Multitask learning improves prediction of cancer drug sensi-
tivity,” Scientific Reports, vol. 6, pp. 1–11, Aug. 2016.

[4] S. Chowdhuri, T. Pankaj, and K. Zipser, “Multinet: Multi-
modal multi-task learning for autonomous driving,” in Proc.
IEEE Winter Conf. Appl. Comput. Vis., Waikoloa Village, HI,
Jan. 2019.

[5] B. Bakker and T. Heskes, “Task clustering and gating for
Bayesian multitask learning,” J. Mach. Learn. Research, vol.
4, pp. 83–99, May 2003.

[6] T. Evgeniou and M. Pontil, “Regularized multi-task learning,”
in Proc. the 10th ACM SIGKDD Int. Conf. Knowledge Discov-
ery Data Mining, Seattle, WA, Aug. 2004, pp. 109–117.

[7] O. Sener and V. Koltun, “Multi-task learning as multi-objective
optimization,” in Advances in Neural Information Processing
Systems 31, Montreal, Canada, Dec. 2018, pp. 527–538.

[8] A. Barzilai and K. Crammer, “Convex multi-task learning by
clustering,” in Proc. Int. Conf. Artificial Intell. Stat., San Diego,
CA, May 2015, pp. 65–73.

[9] A. Kumar and H. Daumé III, “Learning task grouping and
overlap in multi-task learning,” in Proc. Int’l. Conf. Mach.
Learn., Edinburgh, Scotland, Jun.-Jul. 2012, pp. 1723–1730.

[10] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Linear al-
gorithms for online multitask classification,” J. Mach. Learn.
Research, vol. 11, pp. 2901–2934, Oct. 2010.

[11] A. Saha, P. Rai, H. Daumé III, and S. Venkatasubramanian,
“Online learning of multiple tasks and their relationships,” in
Proc. Int. Conf. Artificial Intell. Stat., Ft. Lauderdale, FL, Apr.
2011, pp. 643–651.

[12] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning
algorithm,” in Proc. Int’l. Conf. Mach. Learn., Atlanta, GA,
Jun. 2013, pp. 507–515.

[13] M.-F. Balcan and H. Zhang, “Noise-tolerant life-long matrix
completion via adaptive sampling,” in Advances in Neural
Information Processing Systems 29, Barcelona, Spain, Dec.
2016, pp. 2955–2963.

[14] J. Mairal, F. Bach J. Ponce, and G. Sapiro, “Online dictionary
learning for sparse coding,” in Proc. Int’l. Conf. Mach. Learn.,
2009, pp. 689–696.

[15] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pat-
tern Analysis, Cambridge University Press, Cambridge, United
Kingdom, 2004.

[16] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa,
“Design of non-linear kernel dictionaries for object recogni-
tion,” IEEE Trans. Image Process., vol. 22, no. 12, pp. 5123–
5135, Dec. 2013.

[17] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multi-
ple tasks with kernel methods,” J. Mach. Learn. Research, vol.
6, pp. 615–637, Apr. 2005.

[18] A. Agarwal, H. Daumé III, and S. Gerber, “Learning multiple
tasks using manifold regularization,” in Advances in Neural
Information Processing Systems 23, Vancouver, Canada, Dec.
2010, pp. 46–54.

[19] C. Clingerman and E. Eaton, “Lifelong learning with Gaus-
sian processes,” in Proc. European Conf. Mach. Learn. Prin-
ciples Practices Knowl. Discovery Databases (ECML PKDD),
Skopje, Macedonia, Sep. 2017, pp. 690–704.

[20] S.-J. Kim, “Online kernel dictionary learning,” in Proc. IEEE
Global Conf. Signal and Info. Process., Orlando, FL, Dec.
2015, pp. 103–107.

[21] J. Lee and S.-J. Kim, “Online kernel dictionary learning on a
budget,” in Proc. Asilomar Conf. Signals Syst. Comput., Pacific
Grove, CA, Nov. 2016, pp. 1535–1539.

[22] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learn-
ing with kernels,” IEEE Trans. Signal Process., vol. 52, no. 8,
pp. 2165–2176, Aug. 2004.

[23] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Parsi-
monious online learning with kernels via sparse projections in
function space,” in Proc. Int. Conf. Acoust. Speech Signal Pro-
cess., New Orleans, LA, 2017, pp. 4671–4675.


